
Volume 11 (1) 1998, pp. 75 { 82

An Explicit Runge-Kutta Method of Order Twenty-�ve

B.P. Sommeijer

CWI, P.O. Box 94079,

1090 GB Amsterdam, The Netherlands

1. Prologue

This note was written on the occasion of the twenty-�fth anniversary of Prof.
dr. P.J. van der Houwen's stay at our institute. It was written, merely to
contribute to the festive joy of that celebration, without having any other
pretensions.

On this jubilee we have concentrated on the number 25 and asked ourselves:
is there anything special about 25? Mathematically speaking, this number is
not very spectacular; it is not even a prime. On the other hand, it is a square
itself and at the same time the sum of 2 squares. Furthermore, it is the only
square that is two less than a cube (a result due to Fermat, cf. [8]), and
moreover, 25 is the only integer of the form nk which can be written in the
form (n� 1)! + 1 (proved by Liouville, cf. [8]).

Leaving the �eld of number theory and taking into account the celebrator's
major interest, one is automatically led into the direction of Runge-Kutta (RK)
methods. What have Runge-Kutta methods in common with the number 25?
Maybe the fact that Kutta died on the 25th of December, or possibly that
Nystr�om came up in 1925 with an extension to RK methods? Do there exist RK
methods with 25 stages? Or, even more extravagant, has ever before someone
wasted his time by constructing an (explicit) RK method of order 25? Since I
am not aware of the existence of such a method, I will construct one. However,
it should be noted that the recreational character of such a product cannot be
overemphasized.

2. Introduction

There is, and now I am serious again, a market for high-order methods to inte-
grate the initial-value problem for the (nonsti�) ordinary di�erential equation
(ODE)

dyt

dt
= f(y(t)); t � t0: (1)

75



order of the RK method conditions to be satis�ed

1 1
2 2
4 8
7 85
10 1205
15 141,083
20 20,247,374
25 3,231,706,871

Table 1.

For example, problems in the �eld of astronomy usually have to be solved
with high accuracy demands. This requirement is, in general, more e�ciently
ful�lled by using a method of high order. Concentrating on the class of explicit
RK methods (cf. [1, p.152]), the di�culties in constructing such a method grow
exponentially with the order. This is because the number of nonlinear algebraic
equations to satisfy the order conditions is a rapidly increasing function of the
order and, to solve this system is far from trivial. In Table 1, we give an idea
of the dimension of this system. The next question is: how many parameters
do we need in order to satisfy this huge amount of conditions; or, in other
words, how many stages are at least required? This problem has now been
solved up to and including order 8 (see Butcher [1, p.194]). For higher orders
it is still an open question. For example, starting with an s-stage explicit
RK method providing s(s + 1)=2 free parameters, Hairer [4] succeeded in
satisfying the 1205 conditions for order 10 using only 17 stages, i.e., with 153
parameters. Within the class of explicit RK methods, this is the highest order
obtained. This 10th-order method earned Hairer an entry in the Guinness Book
of Records.

Here we will present an explicit RK method of order 25 using 313 stages.
This is certainly not the least number of stages to obtain this order. Al-
though the minimal number is unknown, upperbounds provided by Cooper
& Verner [2] and by Gragg [3] state that such a scheme can be constructed
with at most 170 stages.

Starting with 313 stages, we obtain 49141 free parameters which appears to
be su�cient to satisfy the (approximately) 3 � 109 order conditions. Moreover,
45228 of these parameters are set to zero. Among the remaining 3913 pa-
rameters many equal numbers occur. Summarizing, the scheme is completely
determined by specifying only 182 parameters.

76



3. Construction

The construction of the method of order 25 does not follow the classical ap-
proach (since the number of order conditions is unmanageable, of course) but is
obtained by iterating an implicit RK method. The construction is completely
described in [5] and will be reproduced here in condensed form (the description
is given for a scalar di�erential equation; however, the extension to a system
of ODEs is straightforward).

Let yn denote an approximation to the exact solution y(t) of the ODE at
t = tn. Then, one step of the s-stage, implicit Runge-Kutta method

ki = f(yn + h

sX

j=1

aijkj); i = 1; 2; : : : ; s;

yn+1 = yn + h
sP

j=1
bjkj

(2)

advances the solution from tn to tn + h; h being the stepsize. The parameters
aij and bj completely determine the RK method. Therefore, such methods are
usually represented by their so-called Butcher tableau [1, p.163]

A = (aij)
(3)

.

b
T = (b1; : : : ; bs)

It is well known that the order of accuracy of the method (2) is maximal
(relative to the number of stages s) when the RK method is of the so-called
Gauss-Legendre type; in that case, the order is equal to 2s. Therefore, our
starting point for the construction of an RK method of order 25 will be a
Gauss-Legendre method (with 13 stages). In the following, A and b, both of
dimension 13, will correspond to this method.

Introducing the vector k := (k1; : : : ; k13)
T , the RK method (2) can be

written compactly as

k = f(yne+ hAk);

(2')

yn+1 = yn + hbTk,

where e denotes the unit vector of dimension 13. Furthermore, we make the
convention that for any vector v = (vj); f(v) denotes the vector with entries
f(vj). From (2'), we observe that k is implicitly de�ned. To solve for this
vector, the following iteration process is proposed

k
(0) = f(yn)e,

(4a)

k
(j) = f(yne+ hAk(j�1)); j = 1; 2; : : : ; 24 .

77



Together with

yn+1 = yn + hbTk(24), (4b)

this de�nes a new method for the integration of the ODE (1) over one step.
Notice that the method f(4a),(4b)g is an RK method of explicit type, since k(j)

is explicitly expressed in terms of k(j�1). Since in each `iteration' we gain one
order (see also [7]), it is easy to show that this scheme is of order 25 indeed.

The Butcher tableau of the method f(4a),(4b)g has the form

O

A O

O A O

O A O

� � � (4')
� � �

O � � � O A O

0
T � � � 0

T
b
T

where O and 0T respectively denote a matrix and a vector (both of dimension
13) with zero entries. In this method we have 25�13 = 325 stages. However, the
�rst 13 stages (represented by the O-matrix in the �rst row) are identical and
thus require only one f -evaluation. Hence, this scheme counts for 24 � 13+ 1 =
313 f -evaluations. The generating Butcher tableau (3) of the underlying Gauss-
Legendre method completely determines the scheme f(4a),(4b)g and is given
in the Appendix.

Finally, we make two observations:

(i) in each `iteration' in (4a) we need the evaluation of f(v) with v = yne +
hAk(j�1), which requires 13 calls to the derivative function f . However, it
should be observed that the components of v are known prior to all these
calls. Consequently, these derivatives can be calculated concurrently. Thus,
on a computer architecture possessing (at least) 13 parallel processors, one
iteration in (4a) requires e�ectively the time needed for the calculation of
one single f -evaluation. In this way the method f(4a),(4b)g counts for 25
e�ective f -evaluations to yield order 25.

(ii) another observation is that, apart from the �nal result yn+1 calculated in
(4b), we can easily construct an `embedded' approximation by calculating
y(m) = yn + hbTk(m) for some m < 24. This does not require additional
f -evaluations since k(m) has already been computed in order to continue
the iteration process. This embedded reference solution can be used to
equip the method with an error control strategy (cf. [5] for details).

78



                                                                                                                                                                
RK4 Hairer 10 iterated Gauss25

                                                                                                                                                                

h CD Σf h CD Σf h CD Σfseq Σfparal

1/200 9.6 48000 1/4 10.1 4080 3 9.1 6260 500

1/400 10.8 96000 1/8 12.8 8160 5/2 10.7 7512 600

1/800 12.0 192000 1/16 15.9 16320 2 12.8 9390 750

1/3200 14.4 768000 1/20 16.8 20400 1 19.9 18780 1500

1/12800 16.8 3072000
                                                                                                                                                                                               

Table 2.

4. Some test results

As a �rst example, we consider Euler's equation of motion [6]

y01 = y2y3; y1(0) = 0;

y02 = �y1y3; y2(0) = 1; 0 � t � 60:

y03 = �0:51y1y2; y3(0) = 1:

We will apply the `classical' 4th-order RK method [1, p.181] to this problem as
well as the 10th-order method of Hairer [4] and the iterated Gauss-Legendre
method f(4a),(4b)g of order 25.

In Table 2, CD denotes the number of correct digits in the solution at the
end point of the integration interval, i.e., CD := � log10(jj global error jj1) and
�f denotes the total number of f -evaluations required by the various methods.

The second example is provided by the orbit equation [6]

y01 = y3, y1(0) = 1� ",

y02 = y4, y2(0) = 0,
0 � t � 20; " = 0:3:

y03 = �
y1

(y21 + y22)
3=2

, y3(0) = 0,

y04 = �
y2

(y21 + y22)
3=2

, y4(0) = [(1 + ")=(1� ")]1=2:

The results obtained by the three methods are given in Table 3.

79



                                                                                                                                                                    

RK4 Hairer10 iterated Gauss25
                                                                                                                                                                                                                                                  

h CD Σf h CD Σf h CD Σfseq Σfparal

1/32 5.2 2560 1/2 2.0 680 4 2.8 1565 125

1/128 7.8 10240 1/4 5.6 1360 2 6.9 3130 250

1/512 10.2 40960 1/8 9.4 2720 1 13.4 6260 500

1/2048 12.6 163840 1/16 12.8 5440 1/2 19.3 12520 1000

1/8192 15.0 655360 1/32 15.6 10880
                                                                                                                                                                                                                                                  

Table 3.

5. Conclusions

From these tables it is clear that the high-order schemes are much more ef-
�cient than the 4th-order method in case the problem has to be solved with
high accuracy demands. Comparing the 10th-order method of Hairer with the
iterated Gauss-Legendre method of order 25, run on a sequential computer,
we see that Hairer's method is more e�cient, unless a global error is required
smaller than approximately 10�14. However, matters are di�erent when par-
allel computers are used. In that case, the number of f -evaluations required
by the iterated Gauss-Legendre method (i.e., �fparal) is only a fraction of the
number required by Hairer's method, especially in the high-accuracy range.

6. Epilogue

We have shown that it is very simple to construct an explicit Runge-Kutta
method of order 25. In fact, following this approach, it is straightforward to
obtain methods of arbitrarily high order (hence, no matter how many years a
jubilee is celebrating, a suitable present is now available).

It is of course questionable whether as high an order as 25 is realistic within
the �eld of the numerical solution of ODEs. However, since this idea of con-
structing parallel methods can also be exploited to solve the special higher-order
di�erential equation dky(t)=dtk = f(y(t)); (k � 2), it may prove to be useful to
obtain e�cient parallel methods of a realistic order (10, say) for this type of
problems.

References

1. J.C. Butcher (1987). The numerical analysis of ordinary di�erential equa-

tions, Runge-Kutta and general linear methods, Wiley, Chichester-New
York-Brisbane-Toronto-Singapore.

80



2. G.J. Cooper and J.H. Verner (1972). Some explicit methods of high

order, SIAM J. Numer. Anal. 15, pp. 643-661.
3. W.B. Gragg (1965). On extrapolation algorithms for ordinary initial value

problems, SIAM J. Numer. Anal. 2, pp. 384-403.
4. E. Hairer (1978). A Runge-Kutta method of order 10, J. Inst. Maths.

Applics. 21, pp. 47{59.
5. P.J. van der Houwen and B.P. Sommeijer (1990). Parallel iteration

of high-order Runge-Kutta methods with stepsize control, J. Comput. Appl.
Math. 29, pp. 111{127.

6. T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick (1972).
Comparing numerical methods for ordinary di�erential equations, SIAM J.
Numer. Anal. 9, pp. 603-637.

7. K.R. Jackson and S.P. N�rsett (1988). Parallel Runge-Kutta methods, to
appear.

8. D. Wells (1986). The Penguin dictionary of curious and interesting num-

bers, Penguin Books.

81



Appendix. The Butcher tableau (3) of the 13-point Gauss-Legendre RK
method

.0101210011913289698800 -.0037730715853257311764 .0027856157560628054051 -.0022182703840461272747

.0018030646911529192477 -.0014642861839759720637 .0011721943452337661279 -.0009135829254769469143

.0006827077750145270710 -.0004778468253280570450 .0002999626252594454610 -.0001525762992120453365

.0000435604600183718815

.0219001283175295116522 .0230303749594321119786 -.0060433198254482344595 .0040236767556734102487
-.0030424947262263454871 .0023820349877676374508 -.0018672464008113139925 .0014364746482838592671
-.0010644224460113069929 .0007408522314171861495 -.0004633455397879408874 .0002351390881966003699
-.0000670516615041579008

.0194299477196462080139 .0500695755432635923426 .0347183775549468096159 -.0078630320673086857063

.0048527461585535623446 -.0034840033366076844759 .0026090624296798342871 -.0019537207684109716373

.0014232950875334562740 -.0009797335329876508772 .0006083550590297416472 -.0003073594525034566440

.0000874442385102884182

.0207461084445201329865 .0439800566806027462386 .0755663734121840834839 .0445364951904864345700
-.0092209168426018347116 .0053546508856877483582 -.0036552267998513166322 .0026044290023489437552
-.0018420098947617049274 .0012446081221076741624 -.0007637502357566112599 .0003831038927983370379
-.0001085915779347433835

.0198907528982510605465 .0474094387268283867543 .0661938972977494572895 .0969774293976857866966

.0519540118842221255781 -.0100633070332503760077 .0055344249147495185851 -.0035852200828572027741

.0024089462753595690177 -.0015790246382069436958 .0009511199314348668008 -.0004718412911307997820

.0001329962009411245521

.0205039757594727670061 .0450910064519209141654 .0715749421921594625400 .0848574338709379334337

.1131500570931065592704 .0565707950657243096030 -.0103514560922495229753 .0053940038996941716117
-.0032926276990788138011 .0020503890674033608806 -.0011990288486457998032 .0005847990952091114488
-.0001634478332218504130

.0200379395811026762773 .0468004290851373722985 .0678786934544959035977 .0918730747240793403196

.0989622717612276794984 .1232140251350561942458 .0581378883077184775486 -.0100724350036075750397

.0049457520072165716579 -.0028000843431064711796 .0015580616553977156341 -.0007396791662731483413

.0002040628015552634827

.0204054502158797901730 .0454759508236551125084 .0706357839585394190350 .0870226013135695082594

.1072006514675230649573 .1077475862317544475943 .1266272327076864780725 .0565707950657243096030
-.0092420333246623081142 .0042155565100349357064 -.0021381870822658433082 .0009697434669433097918
-.0002619733768148272461

 .0201090061817168152079 .0465325912099950237392 .0684856351784587524310 .0906520150191798128359
.1014990774930846821386 .1167268102143058219802 .1107413517006874365122 .1232048971646989952138
.0519540118842221255781 -.0079044390167129175566 .0032428578121441619423 -.0013486888079641627971
.0003512494844068792135

.0203505939605926831435 .0456776460260658869194 .0702005053456502304916 .0878283822588651949777

.1057500336632059560836 .1105371611290996754509 .1199310034152882717295 .1077869392457608708479

.1131289406110460858678 .0445364951904864345700 -.0061296183022904642521 .0020806932382614777186
-.0005041060618621932265

.0201545581441476513418 .0463681093713676806012 .0688284000508638775845 .0900527239139605200173

.1024847286809107948821 .1150953108998595908434 .1136667141857571208102 .1166255934680563036820

.0990552776098906888116 .0969360224482815548464 .0347183775549468096159 -.0040088256243993683854

.0008120546630117317461

.0203090540441620976608 .0458256108306676235872 .0699001006496815601193 .0883321381495556829903

.1049724462144555581494 .1117051154831647599387 .1181430230162482690900 .1107595551436809817551

.1069505184946705966435 .0850493136252994588912 .0754800749353418536914 .0230303749594321119786
-.0016581259348715718922

.0201984419226395678785 .0462133262180762692938 .0691367924846341737705 .0895508372063009261853

.1032253159934297240849 .1140551730569255661207 .1151035822702031889690 .1146058763154245912701

.1021049590772913319083 .0912912607650189964149 .0666511393538308138266 .0498338215041899551337

.0101210011913289698800
                                                                                                                                                                                                          

.0202420023826579397600 .0460607499188642239573 .0694367551098936192317 .0890729903809728691401

.1039080237684442511561 .1131415901314486192062 .1162757766154369550971 .1131415901314486192062

.1039080237684442511561 .0890729903809728691401 .0694367551098936192317 .0460607499188642239573

.0202420023826579397600

82


